
Understanding and Detecting Overlay-based Android Malware
at Market Scales

Yuxuan Yan1,2, Zhenhua Li1∗, Qi Alfred Chen3, Christo Wilson4
Tianyin Xu5, Ennan Zhai6, Yong Li1, Yunhao Liu1,7

1Tsinghua University 2Tencent Mobile Security 3University of California, Irvine
4Northeastern University 5UIUC 6Alibaba Group 7Michigan State University

ABSTRACT
As a key UI feature of Android, overlay enables one app to draw over
other apps by creating an extra View layer on top of the host View.
While greatly facilitating user interactions with multiple apps at the
same time, it is often exploited bymalicious apps (malware) to attack
users. To combat this threat, prior countermeasures concentrate
on restricting the capabilities of overlays at the OS level, while
barely seeing adoption by Android due to the concern of sacrificing
overlays’ usability. To address this dilemma, a more pragmatic
approach is to enable the early detection of overlay-based malware
at the app market level during the app review process, so that all the
capabilities of overlays can stay unchanged. Unfortunately, little has
been known about the feasibility and effectiveness of this approach
for lack of understanding of malicious overlays in the wild.

To fill this gap, in this paper we perform the first large-scale com-
parative study of overlay characteristics in benign and malicious
apps using static and dynamic analyses. Our results reveal a set of
suspicious overlay properties strongly correlated with the malice of
apps, including several novel features. Guided by the study insights,
we build OverlayChecker, a system that is able to automatically
detect overlay-based malware at market scales. OverlayChecker
has been adopted by one of the world’s largest Android app stores
to check around 10K newly submitted apps per day. It can efficiently
(within 2 minutes per app) detect nearly all (96%) overlay-based
malware using a single commodity server.

CCS CONCEPTS
• Security and privacy → Mobile platform security; • Net-
works → Mobile and wireless security.

ACM Reference Format:
Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, ChristoWilson, Tianyin Xu, Ennan
Zhai, Yong Li, and Yunhao Liu. 2019. Understanding and Detecting Overlay-
based Android Malware at Market Scales. In The 17th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys ’19), June
17–21, 2019, Seoul, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3307334.3326094

∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6661-8/19/06. . . $15.00
https://doi.org/10.1145/3307334.3326094

(a) (b) (c) (d)

Point

(e)

Figure 1: Five common forms of overlays: (a) float, (b) cover,
(c) hollow out, (d) single point, (e) offscreen. The upper row
plots the underlying host View and the overlay lying on top
of it, while the lower row plots the user-perceived view in
each case. Benign apps typically use cases (a)(b), while mali-
cious apps use all cases (a)–(e). Note that the overlay (even in
cases (d) and (e)) can receive all user interaction events with
the host View if it explicitly specifies certain flags.

1 INTRODUCTION
Overlay is a user interface (UI) feature supported by Android since
version 1.0. It enables a mobile app to draw over other apps by
creating an extra View layer on top of the host View, as illustrated
in Figure 1. The rationale behind Android’s overlay feature is to im-
prove the users’ experience when they are interacting with multiple
apps at the same time. Indeed, with the limited sizes of smartphone
screens, squeezing the UIs of multiple apps on a small screen would
significantly impair usability (although Android has launchedMulti-
Window support for displaying multiple apps in a split-screen mode
since version 7.0, Multi-Window is seldom used by today’s smart-
phone users). Overlays have been widely adopted by mobile apps
installed on hundreds of millions of mobile devices, such as Face-
book, Uber, Messenger, Skype, etc. We observe 35.4% of the top-500
popular apps in Google Play Store use overlays.

Unfortunately, the overlay feature is often exploited by malicious
apps (or says malware) to attack users [3, 6, 9, 19, 22, 25, 31, 37, 40].
Since overlays can intercept user input that is intended for the
underlying host View, one common attack is to capture sensitive
user actions or data on the fly through deceptive overlays, as illus-
trated in Figures 1(c–e). To make matters worse, a recent study [10]
demonstrated that the UI feedback loop can be completely compro-
mised and controlled through the “cloak and dagger” attack that
exploits only twoAndroid permissions: SYSTEM_ALERT_WINDOW and
BIND_ACCESSIBILITY_SERVICE, where the former is the permis-
sion that allows an app to create overlays on top of all other apps.
Surprisingly, SYSTEM_ALERT_WINDOW is automatically granted to
apps installed from Google Play Store [10].

Given the severity and prevalence of overlay-based attacks, sev-
eral countermeasures have been proposed to restrict the capabilities
of overlays at the OS level [3, 8, 10]. However, these solutions barely

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

168

https://doi.org/10.1145/3307334.3326094
https://doi.org/10.1145/3307334.3326094

see any adoptions by Android due to the concern of sacrificing us-
ability. For example, the “cloak and dagger” attack can be mitigated
by modifying Android to limit the permissions granted to apps
and thus restrict their capabilities. Nevertheless, since “limiting
those services would render the device unusable,” the Android team
merely updated the developer documentation without further ac-
tion, even with full awareness of the security threat [10].

To address this dilemma, a more pragmatic approach is to enable
the early detection of overlay-based malware at the app market level
during the app review process (before the apps are released and
installed on user devices), so that all the capabilities of overlays
can be retained. Unfortunately, little has been known about the
feasibility and effectiveness of this approach due to the lack of
understanding of malicious overlays in the wild. Systematically
gaining such understanding is rather challenging, since there is
no available large-scale dataset of malicious overlays, and it is
prohibitively difficult to manually examine every View for a large
set of apps to collect malicious overlays. Still worse, few regulations
and usage references are available for overlay usage at present,
making it difficult to define benign and malicious overlays.

Understanding overlay-based malware. To overcome this im-
passe, our key insight is that we can figure out the characteristics
of malicious overlays from the overlay behavior differences between
benign and malicious apps. Using the ground-truth malware data
from one of the world’s largest Android app stores, i.e., Tencent App
Market (https://sj.qq.com/myapp/) or T-Market, we perform the
first large-scale comparative study of the overlay behavior between
benign and malicious apps, with both static and dynamic analy-
ses. Compared with static features that can be directly extracted
from Android APK files, many important features of overlays are
dynamically determined at app runtime. To extract these features,
we dynamically exercise apps using the Monkey UI exerciser [34].

Our results reveal a set of suspicious overlay properties strongly
correlated with the malice of apps (an app is labeled to be either
“Benign” or “Malicious”). Our key findings are listed as follows:
(1) Overlays are used by 51% of malicious apps, and they inten-
tionally make their overlays difficult to detect. (2) Type, Flag, and
Format are the three features with the strongest correlations with
an app’s malice, e.g., 84% of the apps that use TYPE_SYSTEM_ERROR
overlays are malicious. (3) Overlays’ visual coverage exhibits dis-
tinct distributions between malicious and benign apps. (4) A pro-
grammatically visible overlay can be visually invisible to users, and
this fact is often exploited by malicious apps.

In particular, we notice that although there are 52 overlay-related
features defined in the Android SDK (see Table 1), they fail to cap-
ture several important aspects of overlays in practice. For example,
no existing feature corresponds to whether an overlay is actually
visible to the user when it is being rendered (e.g., Figures 1(d) and
1(e)). To address this limitation in the Android SDK, we introduce
four novel features into our study (which can improve the detection
accuracy of our system described later).

Detecting overlay-based malware. Leveraging above insights,
we develop a system called OverlayChecker to enable market-scale
early detection of overlay-based malicious apps at the app submis-
sion time. Such detection capability is highly attractive since it
does not require OS-level changes and thus is able to address the

tension between usability and security of previously-proposed so-
lutions [3, 8, 10]. Based on the characterization results of malicious
overlays, OverlayChecker collects 56 static and dynamic features
from each app, and uses them to detect malicious overlay behav-
ior via a random forest [4] machine learning model. Our model is
trained using large-scale, ground-truth data provided by T-Market.

To make OverlayChecker usable at market scales, it must be
efficient enough to analyze a great number of app submissions per
day. For this purpose, we built a lightweight Android emulator to
accelerate our system, that directly runs the Android OS and apps
on x86 architecture, coupled with dynamic binary translation [17] to
support apps that use Android’s native APIs. This custom infrastruc-
ture enables OverlayChecker to analyze apps on a commodity x86
server much more quickly, achieving a speedup of 8–10× compared
to using the default emulator in Android SDK.

Real-world performance and robustness. OverlayChecker has
been integrated into T-Market as a part of the app review process
since Jan. 2018. It checks around 10K app submissions per day using
a single commodity server. The per-app analysis time is less than
two minutes, and OverlayChecker achieves 96% detection precision
and 96% recall. Through the lens of malicious overlays, we find
that OverlayChecker is especially effective (over 90% accuracy) in
detecting certain types of malicious apps, e.g., ransomware, adware,
porn-fraud and SMS-fraud apps, due to their heavy reliance on
overlays to launch their intended attacks.

Furthermore, we applied OverlayChecker to 10K random apps
in Google Play Store and detected 20 previously unknown apps
with malicious overlays. Although these apps were removed from
the Play Store within days, these incidents demonstrate that de-
spite Google’s existing app-security checks, early detection is still
necessary to prevent malware from being made available to users.

We present an in-depth analysis of our random forest model to
investigate whether attackers will be able to avoid OverlayChecker
by adapting their malware’s behavior. By interpreting our model,
we show that the behaviors of benign and malicious overlays are
sufficiently different, which makes it rather difficult for a malicious
overlay to avoid OverlayChecker: most existing malicious over-
lay strategies are entirely precluded, and attackers are left with a
significantly weaker range of attack capabilities.

Summary. We make the following contributions:
• We conduct the first large-scale comparative study of overlay
characteristics in benign and malicious apps using static and
dynamic analyses. Our results reveal a set of suspicious overlay
properties that are strongly correlated with the malice of apps,
including several novel features.

• Driven by these insights, we build a market-scale early detection
system, OverlayChecker, to address overlay-based attacks in the
Android ecosystem. It uses a machine learning model that incor-
porates static and dynamic app features. We developed custom
emulation and dynamic execution infrastructure to increase its
detection speed and resilience against stealthy malware.

• OverlayChecker is currently deployed on one of the world’s
largest Android app stores, where it analyzes around 10K apps
per day on a single commodity server. We also demonstrate
OverlayChecker’s applicability to Google Play Store.

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

169

https://sj.qq.com/myapp/

2 BACKGROUND
This section introduces the basics of Android overlay, and the com-
mon practices of fighting against malicious apps in app stores.

2.1 Android Overlay Basics
In the Android UI framework, an overlay is a special feature en-
abling one app to create an extra View layer that sits atop the host
View1. Different from the host View which is almost always in a
rectangular shape occupying the full screen of the user device, an
overlay possesses a great deal of freedom in terms of shape, area,
and location. As shown in Figure 1, an overlay can be (a) a small-
area circle floating atop the host View at an arbitrary location, (b)
a full-screen rectangle completely covering the host View, (c) a
hollow-out rectangle partially covering the host View, (d) a single
point that is rather difficult to notice, or (e) a rectangle outside the
screen that cannot be noticed by users. All overlays are able to
intercept user input that is intended for the underlying host View if
certain flags are specified. In summary, overlay is a powerful UI fea-
ture that allows one app to display something on top of other apps,
which can be used to intercept sensitive user input, or alter the
user’s perceptions of which app is currently active on the screen.

Each overlay’s appearance is defined by a number of Layout and
View parameters (an overlay is an object inheriting the View class)
listed in Table 1. Among the appearance parameters, the X, Y, Width,
and Height geometry parameters are intuitive. Gravity decides the
placement of an overlay within a larger UI container. isOpaque and
Alpha together qualify and quantify the transparency. Background
specifies an overlay’s background image or color. Format defines
the desired bitmap format like RGBA_8888 (meaning the overlay
can be of any transparency), TRANSPARENT, and TRANSLUCENT.

The capability of an overlay is derived from the specifications
of Type, Root, ScreenShot, and Flags. When an Android app
intends to use the overlay feature, it typically requests the SYS-
TEM_ALERT_WINDOW permission. Despite the proscription from offi-
cial Android documentation, “very few apps should use this per-
mission; these windows are intended for system-level interaction
with the user”, this permission is still requested by 46% of the
benign apps and 75% of the malicious apps hosted in T-Market.
This should be the rationale behind Google’s decision to auto-
matically grant SYSTEM_ALERT_WINDOW to all apps installed from
Google Play Store. In comparison, prior to Oct. 2015 Android apps
had to explicitly request this permission [28, 29]. More in detail,
SYSTEM_ALERT_WINDOW overlays have 5 Types of display priori-
ties, among which TYPE_SYSTEM_ERROR has the highest priority—a
TYPE_SYSTEM_ERROR overlay can even appear on top of the lock
screen interface. In contrast, TYPE_TOAST overlays have limited
capabilities (e.g., they cannot appear on top of the lock screen inter-
face); as a result, they are less commonly used by app developers.
In addition, Root and ScreenShot define the functionality of an
overlay. There are also 31 Flags specifying various aspects of over-
lay behavior, e.g., if FLAG_WATCH_OUTSIDE_TOUCH is set, an overlay
can receive all the UI events outside its coverage area.

1In contrast, overlay provided by the iOS UI framework only enables an app to create
an extra View layer within the same app rather than across apps. Hence, although iOS
overlays are unable to facilitate a user’s interactions with multiple apps at the same
time, they cannot be exploited by an app to launch security attacks on other apps.

Category Parameters

Appearance

X, Y, Width, Height, Gravity,
horizontalMargin, horizontalWeight,
verticalMargin, verticalWeight,
screenOrientation,
isOpaque, Alpha, Background, Format,
dimAmount, screenBrightness,
VisualCoverage, isReallyVisible

Priority Type

Functionality Root, ScreenShot
Quantity ActivityCoverage, NumOfOverlays

Flags

FLAG_FULLSCREEN, FLAG_LAYOUT_IN_SCREEN,
FLAG_ALLOW_LOCK_WHILE_SCREEN_ON,
FLAG_NOT_FOCUSABLE,
FLAG_NOT_TOUCH_MODAL,
FLAG_WATCH_OUTSIDE_TOUCH,
· · · · · · (31 in total)

Static BIND_ACCESSIBILITY_SERVICE,
PACKAGE_USAGE_STATS

Table 1: Android apps’ Layout and View parameters that de-
termine the overlay behavior. The calculated novel features
we design for detecting malicious overlays are in italic.

Finally, there are two static properties at the app level that can am-
plify the capability of overlays: BIND_ACCESSI-BILITY_SERVICE
and PACKAGE_USAGE_STATS. The former is used to assist Android
users with disabilities, and the latter allows an app to collect the
usage statistics of other apps. Although apps must explicitly re-
quest permission to use these capabilities, in practice a malicious
app can lure users to unknowingly grant them, e.g., by abusing the
capability from the SYSTEM_ALERT_WINDOW permission [19].

2.2 Security Practices of App Stores
App stores, such as Google Play Store, Apple App Store, and Ama-
zon Appstore, are the de facto platform of mobile app distribution.
As of Feb. 2018, there are over 3M Android apps released on Google
Play Store. T-Market, the app store we collaborate with in this work,
has released over 6M apps since its launch in 2012, with over 30M
APKs being downloaded by 20M users every day. To protect users
from downloading malicious apps, T-Market conducts a series of
app review procedures to examine ∼10K newly submitted apps
(including both new and updated apps) from developers on a daily
basis. This section takes T-Market as a representative case study to
reveal the practices of today’s app stores for identifying malicious
apps, as well as their utility to OverlayChecker.

To accurately determine the malice of hosted apps, T-Market con-
ducts a sophisticated app review process consisting of fingerprint-
based antivirus checking, API inspection, and manual examination.
Antivirus checking inspects apps against virus fingerprints [41]
from antivirus service companies including Symantec, Kaspersky,
Norton, McAfee, and so on. API inspection identifies malicious
apps by scanning what Android APIs are invoked in their code; its
heuristic lies in that certain patterns (combinations and orders) of
API calls imply serious security threats [1]. For those apps whose
malice cannot be determined through antivirus checking and API
inspection, T-Market assigns security experts to manually examine
them with very high precision.

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

170

T-Market maintains a massive database of malicious apps cap-
tured during the app review process or reported by the users in
the field. The dataset is a precious resource in understanding the
characteristics of overlays used by malicious apps (refer to §3). Fur-
thermore, the malicious apps recorded in the database, together
with the other benign apps, form a large labeled training set, based
on which supervised learning can be applied to reveal the key
overlay properties associated with malicious apps (refer to §4).

Similar to other app stores, T-Market maintains the category
labels of each app (e.g., social networking, shopping, entertain-
ment, and education). These labels are predefined by T-Market and
selected by app developers. For malicious apps recorded in the
database, T-Market has another set of labels such as ransomware,
adware, and SMS-frauds. These labels offer us opportunities to
understand the motivations and use cases of overlay-based attacks.

3 UNDERSTANDING OVERLAY BEHAVIOR
This section presents our analysis of overlay behavior of malicious
and benign apps. Our objective is to identify features that highly
correlate with malicious overlay behavior, which we can then oper-
ationalize for early detection of malware. We first introduce the app
dataset (§3.1), and then describe our methodology for extracting
overlay features (§3.2). Next, we present general statistics (§3.3) and
the key overlay features associated with malicious overlay behavior
(§3.4). Finally, we summarize our study results in §3.5.

3.1 App Dataset
Being one of the world’s largest Android app stores, T-Market
has identified and labeled over 2.4M malicious apps and over 6M
benign apps since May 2015. Our raw dataset contains all the new
and updated apps submitted to T-Market during Jan.–May. 2017.
After removing redundant apps (whose APKs have the same MD5
hash value), we are left with 450K unique apps as our final dataset.
Here we mainly study the recent submissions (relative to the time
we started the project, i.e., Jun. 2017), because many high-profile
overlay attacks exploit new features in Android 6.0 [10] and the
entire dataset maintained by T-Market includes a huge number of
apps with obsoleted overlay usage. We release our dataset used in
the study at https://overlaychecker.github.io/.

For every app in the dataset, T-Market provides not only its APK
file but also its malice and category labels. Nearly one third (31.7%)
of the apps are labelled malicious and thus are quarantined in T-
Market’s database. Note that the ratio of malicious apps is relatively
high because these are the submitted apps before the app review
process, instead of those released to users. As introduced in §2.2,
since T-Market adopts a rather sophisticated and effective app re-
view process, we believe the false positive rate in this labelling is
statistically insignificant and thus has negligible impact on our sub-
sequent analysis and system design. In detail, each of the involved
antivirus services claims that the false positive rate is less than 5%.
When they all label an app as malicious, T-Market takes the app
as malicious; if their labels are inconsistent, T-Market manually
examines the malice of the app. Assuming that all the antivirus
engines are independent of each other (which may overestimate the
accuracy of our ground-truth dataset), the precision of our training
set should exceed 1 − (1 − 95%)4 = 99.9994%.

3.2 Overlay Feature Extraction
The first step towards understanding overlay behavior is to extract
the features of overlays in each app. Specifically, OverlayChecker
identifies overlay-based apps (i.e., apps that actually use one ormore
overlays) dynamically at the run time. In Android, all overlays must
be created by invoking the addView API of the WindowManager-
Global class, so we can identify overlay-based apps by checking
whether an app has created a System Window View (whose Type
ranges from 2000 to 2099). At the same time, we can extract our
concerned dynamic features because they are also attached when
the addView API is invoked. For each overlay, there are static and
dynamic features requiring different extraction methods. Static
features can be directly extracted from an app’s APK file. In con-
trast, dynamic features only exist when the app is executed on user
devices [15], and their number is much larger than that of static fea-
tures. In addition to those original features defined in the Android
SDK (refer to Table 1), we design four novel features: ActivityCov-
erage, NumOfOverlays, VisualCoverage, and isReallyVisible.
We will detail these features in the context of their use cases.

3.2.1 App Emulation. To extract dynamic features of overlays, we
explore each app using the Monkey UI exerciser [34] that can gen-
erate UI event streams at both application and system levels. When-
ever Monkey hits an overlay object, it records 54 dynamic features
(refer to Table 1) for later analysis. We execute apps andMonkey on
Android emulators deployed on a commodity x86 server. However,
we do not use the default Google’s Android device emulator. Since
the default emulator is based on full-system emulation built on top
of QEMU, its performance is limited and cannot achieve our goal
of emulating a large number of apps at scale.

Instead, we built a lightweight emulator that directly runs the
Android OS and apps on x86 architecture. First, as for the Android
OS we use Android-x86, an open-source x86 porting of the original
ARM-based Android OS. Also, to support apps that use Android’s
native APIs, we implement dynamic binary translation [2, 16] based
on Intel Houdini [17] to translate ARM instructions into x86 instruc-
tions (most dynamic libraries in Android are based on the ARM
ISA instead of x86). Moreover, we notice that a very small portion
(< 0.9%) of apps cannot run successfully on the abovementioned
lightweight Android emulator. To address this problem, we make
extra customization in the production system – for those incom-
patible apps, we roll back (from our lightweight emulator) to the
default Google’s Android emulator to successfully execute them.

Further, for parallelism we run multiple concurrent emulators
on a x86 server, with each bound to one CPU core. Specifically,
for a commodity x86 server (HP ProLiant DL-380) with 5×4-core
Xeon CPU @ 2.50 GHz and 32-GB memory, we run 16 emulations
on 16 cores concurrently and the remaining 4 cores are employed
for scheduling, monitoring, and logging. Our lightweight emulator
is much more efficient than the default emulator in the Android
SDK—typically it can reduce the emulation overhead by 8–10×.
Within each emulator, generating and executing 100, 1K, 10K and
100K Monkey events take 2, 22, 220 and 2220 seconds on average.

Some malicious apps may attempt to recognize whether they
are running on emulators so as to hide their malicious activities.
They typically check static configurations of the system, dynamic
time intervals of user actions, and sensor data of the device to

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

171

https://overlaychecker.github.io/

1 10 100 1K 5K 10K 50K 100K
0

20

40

60

80

100

Ac
tiv

ity
C

ov
er

ag
e

(%
)

Number of Monkey Events
1 10 100 1K 5K 10K 50K 100K

0

400

800

1200

1600

2000

2400

Em
ul

at
io

n
Ti

m
e

(s
)

ActivityCoverage

Emulation Time

Figure 2: Relationship between the emula-
tion time, ActivityCoverage, and number of
Monkey events.

10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

ActivityCoverage (%)

C
D

F
(%

)

Max = 100(M), 100(B)

Mean = 71(M), 77(B)

Median = 63(M), 75(B)

Min = 21(M), 23(B)

Malicious Apps
Benign Apps

Figure 3: ActivityCoverage for all mali-
cious (M) and benign (B) apps when 5K
Monkey events are executed.

1 2 3 4 5 60

20

40

60

80

100

Number Of Overlays

C
D

F
(%

)

Overlay−based Malicious Apps
Overlay−based Benign Apps

Figure 4: CDF of NumOfOverlays for
all overlay-based malicious and be-
nign apps.

identify emulators [7, 12, 26]. To prevent adversarial detection, we
made three improvements to our emulators to make them behave
more consistently with real devices and users. First, we alter the de-
fault configurations of the emulators, including their identity (IMEI
and IMSI), network properties, and other properties defined in the
build.prop file such as PRODUCT and MODEL types [26]. Second, we
adjust the execution parameters of Monkey to make its generated
UI events appear more realistic [34]. For example, we dynamically
tune the throttle parameter within a reasonable range, so that
the occurrence time intervals of the UI events basically comply
with real-world cases. Third, we replay traces of sensor data (con-
cerning the acceleration, rotation vector, proximity, orientation,
and so forth) collected from a number of real smartphones on our
emulators to improve authenticity [7, 12, 33].

3.2.2 UI Exploration. Detecting malicious overlay behavior re-
quires a high UI coverage to examine as many overlays as pos-
sible. Initially, we used the Activity coverage as the main metric
of UI coverage, as each Android app specifies its possible (but not
necessarily used) Activity objects in its AndroidManifest.xml
configuration file. However, this metric is overly pessimistic, since
it counts Activities that are not actually referenced by the code.
To figure out which Activities are actually used by an Android
app, we write a script to automatically scan the code of its APK
file. The scanning results show that for an average app, 88% of its
specified Activities are actually referenced. Therefore, we define
a more accurate metric, ActivityCoverage, to quantify the UI cov-
erage. For an app, the ActivityCoverage is the ratio of detected
Activities during emulation over its actually used Activities.

Over the apps in our dataset, we observe that generating and
executing 100K Monkey events generally achieves the highest Ac-
tivityCoverage. Consequently, it requires around 2220 seconds
(= 37 minutes) on average to analyze the overlay behavior of ev-
ery single app2. However, this emulation time is unacceptable to
both app stores and developers in practice. From the perspective of
app stores, the resulting computation overhead is expensive, e.g.,
T-Market would need to employ hundreds of servers to handle its
current workload. From the perspective of app developers, after
submitting an app to the store, they would have to wait for nearly 40
2More in detail, we have modified the employed Android system running on our
emulators, so as to selectively authenticate the permissions for permission-based app
usages. Nevertheless, we are currently not able to deal with the app usage scenarios
where specific usernames and passwords are required.

minutes before the app is released to users. This could significantly
impair the prosperity of T-Market, given that many rival app stores
allow a newly submitted app to be released to users instantly.

To address this problem, we carefully balance effectiveness in
terms of ActivityCoverage and efficiency in terms of emulation
time [20]. Figure 2 shows the ActivityCoverage achieved with
increasing running time of Monkey. We can see that as the emula-
tion time increases, the average ActivityCoverage quickly grows
until it is close to 76%; after that, its growth is flat. Even spending
20× more time to generate 100K Monkey events can only increase
the ActivityCoverage to 78% on average. Therefore, we choose to
run the emulation for ∼100 seconds (5K Monkey events) to achieve
a nearly optimal (76%) ActivityCoverage as the “sweet spot” be-
tween effectiveness and efficiency.

More specifically, in Figure 3 we plot how ActivityCoverage
varies between malicious and benign apps when 5K Monkey events
are executed. There is an obvious distinction between their Activ-
ityCoverage rates—for all typical statistical metrics (min, median,
mean, and max), benign apps have larger ActivityCoverage rates.
The Pearson correlation coefficient (PCC) between ActivityCov-
erage and the malice of apps is non-trivial: PCC = −0.12, with
p-value<0.001 (in all experiments throughout this paper, we only
use the PCC results with < 0.05 p-value to ensure their statistical
significance; therefore, we do not specify the p-value when present-
ing PCC results hereafter). Hence we hypothesize that malicious
apps are intentionally making it hard for dynamic analysis tools to
trigger malicious behaviors. Therefore, we use ActivityCoverage
as a novel feature for detecting malicious overlays.

3.3 Global Statistics
Through the above described app emulation and UI exploration,
we find that overlays are pervasively used by more than 40% of the
Android apps in our dataset (including both malicious and benign
apps). Here we say “more than” because our app emulation and UI
exploration processes are not exhausting all overlays used by all
apps. Using the malicious app labels provided by T-Market (whose
labeling process is detailed in §3.1 and §2.2), we find that overlays
are being used by 51% of malicious apps but only 36% of benign
apps. As mentioned in §2.1, the overlay feature is actually powerful
in acquiring and affecting user interactions (especially for Android
apps), which is the major reason why there are so many Android
apps that make use of (or take advantage of) overlays.

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

172

More in detail, we wonder how many overlays a benign app
and a malicious app use respectively. To this end, we devise a new
feature NumOfOverlays to count the number of detected overlays
in an overlay-based app in our study. As depicted in Figure 4, 72% of
overlay-based benign apps and 91% of overlay-based malicious apps
use only one overlay. Both the average number (1.1) and maximum
number (12) of overlays used in malicious apps are smaller than
those (average: 1.5, max: 28) used in benign apps. By manually
checking a random sample of overlay-based malicious and benign
apps, we find that malicious apps usually have less functionality
than benign apps, and thus do not need to utilize as many overlays.

3.4 Profiling Key Overlay Features
In this section, we analyze in detail each of the key overlay features,
so as to understand what a malicious overlay looks like in the wild.
All the overlay features studied in this work are manually picked
based on our domain knowledge and data analysis. We had tried
some automatic methods for feature selection, but the effect turned
out to be rather limited. We first analyze the two static features,
and then discuss the two dynamic features (Type and Flags) that
have the strongest correlations with the malice of apps. Finally, we
elaborate several important appearance features.
3.4.1 Understanding Static Features.

• BIND_ACCESSIBILITY_SERVICE. This permission is granted for
accessibility services specially designed to assist disabled An-
droid users. Unfortunately, because an app with this permis-
sion has manifold powerful capabilities (e.g., getting the noti-
fication of any event that affects the device, accessing the full
View tree, and programmatically performing click or scroll ac-
tions), this permission can be exploited to launch powerful at-
tacks [18]. As mentioned in §1, the Android UI feedback loop
can be completely compromised and controlled by exploiting the
BIND_ACCESSIBILITY_SERVICE and SYSTEM_ALERT_WINDOW per-
missions (the “cloak and dagger” attack [10]). In our dataset, 1.3%
of apps utilize accessibility services, among which 2.5% are mali-
cious. In particular, 0.11% of apps utilize both accessibility ser-
vices and SYSTEM_ALERT_WINDOW overlays, among which 1.5%
are malicious. Although the number of apps using this permis-
sion is small, we still pay attention to the simultaneous usages
of BIND_ACCESSIBILITY_SERVICE and SYSTEM_ALERT_WINDOW,
given the devastating effect of the “cloak and dagger” attack.

• PACKAGE_USAGE_STATS. This permission allows an app to collect
the usage statistics of other apps including the foreground app.
Acquiring it can help a malicious app launch more intelligent
overlay-based attacks. In our dataset, 2.2% of apps utilize this
permission, among which 5.2% are malicious. In particular, 0.36%
of apps utilize both PACKAGE_USAGE_STATS and overlays, among
which 6.4% are malicious. Although the overlay-based attacks
coupled with PACKAGE_USAGE_STATS are not so devastating as
the “cloak and dagger” attacks, we still need to be cautious of the
simultaneous usages of PACKAGE_USAGE_STATS and overlays.

3.4.2 Understanding Type and Flags.

• Type. An overlay can have a total of 16 Types, among which
the six Types listed in Figure 5 are the most frequently used.
In comparison, the remaining 10 Types are together used by

less than 0.1% of overlay-based apps. Most notably, 84% of the
apps that use TYPE_SYSTEM_ERROR overlays are malicious, and
the PCC between TYPE_SYSTEM_ERROR and the malice of apps is
as high as 0.69. This is because TYPE_SYSTEM_ERROR possesses
the highest priority among all the Types—a TYPE_SYSTEM_ERROR
overlay can even appear on top of the lock screen interface. On
the other hand, although TYPE_TOAST overlays are utilized in
nearly 1/3 of overlay-based apps, merely 5% of the apps that use
TYPE_TOAST overlays are malicious and the corresponding PCC
is as low as -0.29. This is because “toasts” have relatively limited
capabilities and are typically used for transient notifications.

• Flags. We study all the 31 Flags of Android overlays. Figure 6
depicts the statistics of the 13 most frequently used Flags. We
observe that the top four Flags’ correlations with the malice of
apps differ greatly. For example, although FLAG_NOT_FOCUSABLE
is used in 2/3 of overlay-based apps, only 10% of these apps are
malicious and the corresponding PCC is as low as -0.57. The
reason is straightforward—a FLAG_NOT_FOCUSABLE overlay can-
not get users’ input events independently (i.e., it also needs the
permission of FLAG_WATCH_OUTSIDE_TOUCH). In contrast, 82% of
the apps that use FLAG_FULLSCREEN overlays are malicious and
the PCC is as high as 0.68. This is because a FLAG_FULLSCREEN
overlay can cover the whole screen (including the status bar)
and thus can easily deceive mobile users. It is worth noting that
although we individually state each Flag here, our adopted ran-
dom forest model (§4.1) will inherently and automatically take
the combinations of these Flags into consideration. As a matter
of fact, such automatic combination is also applicable to the other
overlay features studied in this work.

3.4.3 Understanding Appearance Features.

• Format and Alpha. Among the 18 appearance parameters in Ta-
ble 1, Format is of the highest importance to malicious overlay
behavior since it determines the basic bitmap transparency of an
overlay. As shown in Figure 7, among the three major Formats:
RGBA_8888, TRANSLUCENT and TRANSPARENT, RGBA_8888 is not
only the most frequently used but also the most related to the
malice of apps. This is because RGBA_8888 means that the over-
lay can be of any transparency, and thus gives the overlay the
greatest presentation freedom.
Supplementary to Format, Alpha also impacts the transparency
of an overlay. Since Alpha is a continuous value lying between
0.0 (fully transparent) and 1.0 (fully opaque), we manually di-
vide the value scope into three ranges: [0, 0.5], (0.5, 1.0) and 1.0.
From Figure 8, we observe that Alpha = 1.0 is not only the most
frequently used but also the most related to the malice of apps.
This can be reasonably ascribed to the fact that Alpha = 1.0 is the
default configuration for a View and few developers would adjust
this configuration. Thus, we infer that Alpha should not be an
important property in detecting malicious overlay behavior.

• VisualCoverage. Based on our experiences of manually exam-
ining the layouts of many overlays used by malicious and benign
apps, we propose a novel appearance feature named Visual-
Coverage that denotes the ratio of the host View’s area visually
covered by the overlay(s). When the host View is fully or par-
tially covered by an overlay, the overlay’s VisualCoverage is

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

173

-1

-0.5

0

0.5

1

TYPE_TOAST

TYPE_SYSTEM_ERROR

TYPE_PHONE

TYPE_SYSTEM_ALERT

TYPE_SYSTEM_OVERLAY

TYPE_PRIORITY_PHONE

Usage Frequency in Overlay-based Apps
Correlation with the Malice of Apps

Figure 5: Frequently used
Types and their PCCs with
the malice of apps.

-1

-0.5

0

0.5

1

FL
AG

_N
O

T_
FO

C
U

SA
BL

E

FL
AG

_N
O

T_
TO

U
C

H
_M

O
D

AL

FL
AG

_L
AY

O
U

T_
IN

_S
C

R
EE

N

FL
AG

_F
U

LL
SC

R
EE

N

FL
AG

_K
EE

P_
SC

R
EE

N
_O

N

FL
AG

_N
O

T_
TO

U
C

H
AB

LE

FL
AG

_W
AT

C
H

_O
U

TS
ID

E_
TO

U
C

H

FL
AG

_L
AY

O
U

T_
N

O
_L

IM
IT

S

FL
AG

_H
AR

D
W

AR
E_

AC
C

EL
ER

AT
ED

FL
AG

_S
PL

IT
_T

O
U

C
H

FL
AG

_D
IM

_B
EH

IN
D

FL
AG

_A
LT

_F
O

C
U

SA
BL

E_
IM

FL
AG

_L
AY

O
U

T_
IN

SE
T_

D
EC

O
R

FL
AG

_L
AY

O
U

T_
AT

TA
C

H
ED

_I
N

_D
EC

O
R

FL
AG

_A
LL

O
W

_L
O

C
K_

W
H

IL
E_

SC
R

EE
N

_O
N

Usage Frequency in Overlay-based Apps
Correlation with the Malice of Apps

Figure 6: Usage frequency of
Flags and their PCCs with the
malice of apps.

-1

-0.5

0

0.5

1

RGBA_8888

TRANSLUCENT

TRANSPARENT

Usage Frequency in Overlay-based Apps
Correlation with the Malice of Apps

Figure 7: Frequently used
Formats and their PCCs
with the malice of apps.

1 (0.5, 1) [0, 0.5]
Alpha

-1

-0.5

0

0.5

1

Usage Frequency in Overlay-based Apps
Correlation with the Malice of Apps

Figure 8: Usage frequency of
different ranges of Alpha & the
PCCs with the malice of apps.

Overlay 1

Overlay 2

Host View

Figure 9: Our calculation of
the VisualCoverage for mul-
tiple overlays.

20 40 60 80 100
VisualCoverage (%)

0

20

40

60

80

100

C
D

F
(%

)

Benign Apps
Malicious Apps

Figure 10: CDF of the over-
lay(s)’ VisualCoverage for be-
nign and malicious apps.

135000

168750

202500

236250

270000

303750

337500

Figure 11: Heat map of the
VisualCoverage scopes for
benign apps’ overlays.

Figure 12: Heat map of the Vi-
sualCoverage scopes for mali-
cious apps’ overlays.

FLAG_LAYOUT_NO_LIMITS
and the layout is outside

the Screen?

Y

N

Width<0.7%
or

Height<0.7%?

Y

N Alpha<0.5?
Y

N
Is the

Background
null?

Y

N
Visible

Invisible

Is the
Background

opaque?

N

Y

Figure 13: Flow chart for our calculation of isReallyVisible for an overlay. If an overlay is an instance of a
ViewGroup, it is really visible as long as one child View of the ViewGroup is really visible.

calculated by dividing the intersection area by the area of the
host View. A more complex case is in Figure 9—there is one host
View and two overlays on the screen, so the overlays’ Visual-
Coverage is calculated by dividing the shaded area by the area
of the host View. As shown in Figure 10, overlays’ VisualCover-
age exhibits distinct distributions between malicious and benign
apps. For benign apps’ overlays, VisualCoverage is almost uni-
formly distributed; for malicious apps’ overlays, the distribution
of VisualCoverage is highly skewed. Thus, the PCC between
VisualCoverage and the malice of apps is fairly high (0.36).

• Y and Gravity. We further consider each overlay’s VisualCov-
erage scope, denoting the host View’s geometric scope visually

covered by the overlay. Figures 11 and 12 plot the heat maps of
the VisualCoverage scopes for benign and malicious apps’ over-
lays. The frame of each figure represents the screen of common
Android smartphones. Again, we notice distinct distributions
between the overlays’ VisualCoverage scopes of malicious and
benign apps. Specifically, we observe that for benign apps’ over-
lays, the VisualCoverage scopes tend to locate at the top left
corner of the screen (i.e., a small-area rounded or squared overlay
floating at the top left corner, showing system status information).
But for malicious apps’ overlays, the VisualCoverage scopes
do not have a preferred region in the screen. This indicates that
an overlay’s Y coordinate and Gravity are also correlated with

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

174

the malice of its affiliated app—recall that Gravity decides the
placement of an overlay within a larger UI container.

• isReallyVisible. Visibility is critical for a user’s perception of
an overlay. Unfortunately, a programmatically visible overlay
can be visually invisible to users, e.g., in Figures 1(b) and 1(c)
if the overlay is transparent, in Figure 1(d) where the overlay
is too small to see with naked eyes, or in Figure 1(e) where the
overlay is outside the screen. This fact is often exploited by mali-
cious apps. To cope with this issue, we calculate a novel feature
isReallyVisible based on an overlay’s appearance features
including Width, Height, Alpha, Background, isOpaque, and so
on. The workflow is plotted in Figure 13. Among all the apps that
have used overlays, 31.2% of malicious apps and 15.6% of benign
apps are using overlays that are not really visible, showing the
significance of isReallyVisible.

3.5 Summary of the Study Results
Our comparative study leads to a series of useful insights with
respect to malicious overlay behavior:
• Overlays are used by more than 40% of Android apps overall in
our dataset, and 51% of malicious apps.

• On the other hand, both the average and maximum numbers
of overlays used in malicious apps are smaller than those in
benign apps. This is because malicious apps usually have less
functionality than benign apps.

• We observe malicious apps intentionally make it hard for dy-
namic analysis tools to detect their overlays.

• Type, Flag, and Format are the three features that correlate
most strongly with an app’s malice, e.g., 84% of the apps that
use TYPE_SYSTEM_ERROR overlays are malicious (PCC = 0.69);
more than two thirds of the apps that use FLAG_FULLSCREEN
or FLAG_LAYOUT_IN_SCREEN overlays are malicious (PCC = 0.68
and 0.55); and 48% of the apps that use RGBA_8888 overlays are
malicious (PCC = 0.45).

• We design a complex feature VisualCoverage that reveals dis-
tinct distributions between malicious and benign apps’ overlays.

• A programmatically visible overlay can be visually invisible to
users, and this fact is often exploited by malicious apps. To make
it clear, we develop a novel feature isReallyVisible based on
multiple existing appearance features.

4 DETECTING OVERLAY-BASED MALWARE
Guided by our study results in §3, we build the OverlayChecker sys-
tem to detect overlay-based malware (§4.1) and evaluate its efficacy
using T-Market as a real-world case study (§4.2). We demonstrate its
extensibility by applying it to Google Play Store (§4.3) and discuss
its robustness to attackers’ evasion attempts (§4.4).

4.1 Design and Implementation
OverlayChecker takes an app’s APK file as input and outputs the
estimated malice of every detected overlay in the app. It checks
each app with three steps:
• Step 1: Overlay feature extraction creates the features for
detection, as described in §3.2.

• Step 2: Overlay/app classification evaluates the malice (be-
tween 0 and 1.0) of every detected overlay based on the extracted
features. The per-overlay scores are then combined to label the
app as malicious or benign with respect to overlay behavior.

• Step 3: Assisting app review helps the app store vendor to
review and release newly submitted apps.
The classification model used in Step 2 is built from random

forest learning [4] using the labeled training set consisting of known
malicious and benign apps from T-Market (refer to §3.1), together
with their extracted 56 features per overlay. To calibrate the random
forest probabilities, We used a parametric approach based on Platt’s
sigmoid model. We use a random forest model for OverlayChecker
because it exhibits higher precision and recall than a single decision
tree on our task. Additionally, the training process of a random
forest is faster than that of a complex classifiers (e.g., SVM), and
the resulting trained model is interpretable. We present a detailed
comparison of five classifiers in §4.2.

To label newly submitted apps as malicious (M) or benign (B)
in terms of overlay behavior, OverlayChecker uses a three-step
process. First, OverlayChecker quantifies the malice of each de-
tected overlay in a given app as a confidence value, denoted as CoM
(Confidence of Malice), between 0 and 1.0 using the classification
model. In Figure 14 we plot the CDF of the malice of all overlays
detected in our study, from which we observe distinct distributions
between malicious apps and benign apps. Second, OverlayChecker
produces a confidence score for the entire app; to be conservative,
we use the malice of the most malicious overlay in the app. Third,
OverlayChecker labels the app as malicious if the confidence is
above a specific threshold. Based on the malice of known apps
provided by T-Market, we draw the curves for both false positive
rate and false negative rate, as illustrated in Figure 15. Then, we
find the minimum sum of the two rates as the confidence threshold
by adding the two curves together. For our studied dataset, we
configure the confidence threshold as 0.24 (Malicious: >0.24, Be-
nign: ≤0.24). While the concrete value of our calculated confidence
threshold may not be applicable to other app stores, it can be easily
and automatically calculated by them with the same methodology.

Integration to a real app market. OverlayChecker has been
integrated into T-Market as a part of app review process since
Jan. 2018. It automatically detects overlay-based malicious apps
submitted to T-Market in a user-transparent manner, so all the apps
currently released on T-Market (which users can see and download)
are safe in terms of their utilized overlays.

4.2 Evaluation
The key efficacy metrics of OverlayChecker are its precision, recall,
and execution speed. In Table 2 we present a comparison of six
different machine learning classifiers trained on: (1) the 52 over-
lay features from the Android SDK, and (2) these 52 features plus
the four novel features we developed in §3.4. Following the best
practices in machine learning, we leverage 10-fold cross-validation
when evaluating precision and recall. We see that our four novel
features improve the detection accuracy of malicious overlays by
∼3% regardless of classifier – note that such 3% increase is not trivial

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

175

0 0.2 0.4 0.6 0.8 1
Confidence of Malice

0

0.2

0.4

0.6

0.8

1

C
D

F
(%

)

Benign Apps
Malicious Apps

Figure 14: CDF of the CoM
(Confidence of Malice) of all
the overlays detected in our
study.

0 10.2 0.4 0.6 0.8
Confidence of Malice

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

0.24

False Positive Rate
False Negative Rate

Figure 15: Minimize false pos-
itive + negative rate by tuning
the threshold for CoM.

0

0.05

0.1

0.15

G
in

i I
m

po
rta

nc
e

TY
PE

_S
YS

TE
M

_E
R

R
O

R
FL

AG
_F

U
LL

SC
R

EE
N

FL
AG

_N
O

T_
FO

C
U

SA
BL

E
FL

AG
_L

AY
O

U
T_

IN
_S

C
R

EE
N

FO
R

M
AT

_R
G

BA
_8

88
8

Vi
su

al
C

ov
er

ag
e

H
ei

gh
t

N
um

O
fO

ve
rla

ys
W

id
th

FO
R

M
AT

_T
R

AN
SL

U
C

EN
T

is
R

ea
lly

Vi
si

bl
e

PA
C

KA
G

E_
U

SA
G

E_
ST

AT
S Y

G
R

AV
IT

Y_
LE

FT
FL

AG
_N

O
T_

TO
U

C
H

_M
O

D
AL

G
R

AV
IT

Y_
TO

P
TY

PE
_S

YS
TE

M
_A

LE
R

T
G

R
AV

IT
Y_

R
IG

H
T

Sc
re

en
Sh

ot
TY

PE
_P

H
O

N
E

Figure 16: Top-ranking
features for early detec-
tion of malicious overlay
behavior.

Screen

Figure 17: Du-Antivirus
leverages multiple over-
lays with weird shapes
and locations.

Algorithm
Precision
(56 / 52)

Recall
(56 / 52)

Training Time
(56 / 52) second

Naive Bayes 0.88 / 0.85 0.72 / 0.73 2 / 2
Logistic Regression 0.87 / 0.84 0.84 / 0.81 6 / 6
Random Forest 0.96 / 0.93 0.96 / 0.93 35 / 35
RBF-SVM 0.95 / 0.91 0.95 / 0.91 1626 / 1625
Linear-SVM 0.93 / 0.90 0.93 / 0.90 11551 / 11542
Poly-SVM 0.91 / 0.89 0.91 / 0.88 59294 / 58762

Table 2: Efficacy of different classification algorithms using
56 overlay features vs. the 52 original overlay features.

when the precision/recall is already very high (> 90%), thus demon-
strating their utility. Also, we see that the random forest model
achieves the highest precision (96%) and recall (96%) amongst the
six models, while having a relatively short training time of 35 sec-
onds on a commodity x86 server. These results explain our decision
to use a random forest model in OverlayChecker.

To understand the 4% false positives, we manually inspected the
detection logs and found that the 4% errors reflect some problems
stemming from the abuse of overlays. In fact, although we deter-
mined that the 4% false positives are benign apps, 97% of them had
irregular overlay behavior, particularly using TYPE_SYSTEM_ERROR
overlays. As a matter of fact, the 4% false positive rate is considered
acceptable by T-Market, as apps flagged by OverlayChecker receive
a 2nd-roundmanual review. Specifically, among the nearly 10K apps
submitted per day, there are usually about 1200 apps flagged by
OverlayChecker, among which nearly 1150 are meanwhile labeled
as malicious by T-Market (using its own high-precision security
checking mechanisms, refer to §2.2). Thus, OverlayChecker only
has around 50 (= 1200 − 1150) apps requiring manual review, and
only around a couple of them are false alarms.

As we observe in §3.3, overlays are used by 51% of malicious apps,
so the high recall (96%) illustrates that OverlayChecker is able to
detect nearly half (49% = 51%×96%) of all malicious apps hosted on
T-Market using solely automated overlay behavior analysis. More
specifically, using the category labels of apps maintained by T-
Market (§2.2), OverlayChecker can detect the vast majority (90+%)
of certain types of malicious apps, e.g., 99% of ransomware, 97% of
adware, 93% of porn-fraud, and 90% of SMS-fraud apps. The reason
is intuitive: such malicious apps heavily rely on overlays to launch

their desired attacks. Ransomware apps use TYPE_SYSTEM_ERROR
overlays to show ransom messages on top of users’ lock screens;
adware and porn-fraud apps exploit SYSTEM_ALERT_WINDOW over-
lays to show ads on top of other apps; SMS-fraud apps use SYS-
TEM_ALERT_WINDOW overlays to capture users’ telephone call infor-
mation (for sending fraud SMS messages later).

In detail, Figure 16 presents the Gini [5] importance of the top-
20 important features in our trained random forest model (we
use Gini importance to profile the correlations between the over-
lay features and the malice of apps due to its special suitability
for the random forest model). Overall, the results are consistent
with our measurement findings in §3.3 and §3.4. For example,
TYPE_SYSTEM_ERROR’s highest importance complies with its high-
est correlation with the malice of apps. Similarly, the very high im-
portance of FLAG_FULLSCREEN and FLAG_LAYOUT_IN_SCREEN con-
form to their high correlations with the malice of apps. Specially,
our introduced novel features VisualCoverage, NumOfOverlays
and isReallyVisible rank the 6th , 8th and 11th .

Figure 16 also shows the high effectiveness of dynamic fea-
tures. Among the 56 features, only two (PACKAGE_USAGE_STATS and
BIND_ACCESSIBILITY_SERVICE) are static and their importances
ranked only 12th and 44th. As discussed in §3.2, this is because
many important characteristics of overlays only exhibit dynami-
cally at app runtime. This thus concretely shows that it is necessary
to consider dynamic features to ensure high detection effectiveness.

We update our classification model on a monthly basis using data
from newly submitted apps. When the classification model is ready
and integrated into OverlayChecker, the evaluation time for one
app is within 2 minutes, among which nearly 100 seconds are spent
on overlay feature extraction (cf. §3.2.2). OverlayChecker is able
to check ∼10 K apps submitted to T-Market per day using a single
commodity x86 server (cf. §3.2.1 for the detailed configurations).

4.3 Extensibility
OverlayChecker is not limited to T-Market and can be directly
applied to other app stores. First, our research methodology can
be applied by other app stores as it only requires the APK file and
security label of each app as preconditions. At present, almost all
app stores can provide the APK files of its hosted apps, and most
mainstream app stores maintain their own database of malicious

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

176

TYPE_TOAST

TYPE_SYSTEM_ALERT

TYPE_SYSTEM_OVERLAY

TYPE_PHONE

TYPE_PRIORITY_PHONE

TYPE_SYSTEM_ERROR

TYPE_ACCESSIBILITY_OVERLAY

TYPE_INPUT_METHOD

TYPE_INPUT_METHOD_DIALOG

TYPE_KEYGUARD_DIALOG

TYPE_PRIVATE_PRESENTATION

TYPE_SEARCH_BAR

TYPE_STATUS_BAR

TYPE_STATUS_BAR_PANEL

TYPE_SYSTEM_DIALOG

TYPE_WALLPAPER

FLAG_LAYOUT_IN_SCREEN

FLAG_FULLSCREEN

The other 29 Flags

FLAG_WATCH_OUTSIDE_TOUCH

The other 28 Flags

FLAG_NOT_FOCUSABLE

FLAG_NOT_TOUCH_MODAL

Benign

Type

Flag

Flag

Request for

BIND_ ACCESSIBILITY_

SERVICE or Root?

Y

N

Request for system-level

permission or token

Start

Risky

Malicious
Check appearance

properties

Abnormal

layout?

Y

N

Risky

Users get explicit
notifications

Request for

ScreenShot?

Y

N

Risky

Request for

PACKAGE_USAGE_STATS?

Y

N

Request for

BIND_ ACCESSIBILITY_

SERVICE or Root?

Y

N

Check appearance

properties

Malicious

Risky

Abnormal

layout?

Y

N

Figure 18: Simplified flow chart of the classification model used by OverlayChecker, illustrating the robustness of Overlay-
Checker to knowledgeable attackers. As a typical case, the recent overlay-based “cloak and dagger” attacks must go through
the steps highlighted in light blue, which always result in a malicious or risky classification.

apps. Further, although the construction of our classification model
relies on the app dataset provided by T-Market, once the model is
trained OverlayChecker can work independently of T-Market and
help other app stores detect malicious overlay behavior.

In order to validate the practical extensibility of OverlayChecker,
we applied it to 10 K randomly sampled apps released on Google
Play Store. Despite Google’s own sophisticated security checking,
OverlayChecker is still able to detect 20 (0.2%) apps with mali-
cious overlay behavior (among the 22 apps flagged by Overlay-
Checker). We manually checked each suspicious app to examine
whether there was actually malicious overlay behavior. For exam-
ple, one suspicious app “Lock Screen Master” earned an alarm-
ing CoM value mainly because of its simultaneous usages of SYS-
TEM_ALERT_WINDOW and BIND_ACCESSIBILITY_SERVICE. Another
suspicious app “Du-Anti-virus” was determined to be malicious be-
cause it leveragedmultiple overlays withweird shapes and locations
as depicted in Figure 17. Interestingly, three days after our experi-
ment these apps were removed from Google Play Store, potentially
due to reports from users. However, since these apps were officially
available, users who installed them were potentially vulnerable for
at least three days. This indicates the pressing need today for a
market-scale early detection system like OverlayChecker.

4.4 Robustness to Evasion Attempts
In the learned classification logic in OverlayChecker, it may not
be difficult for a knowledgeable attacker to pick a single overlay
feature used in our system and make it look (more) benign, but the
key point of OverlayChecker’s detection is to consider all features
of an overlay in combination to determine its malice. This thus
significantly raises the bar of creating a powerful malicious overlay,
making the detection in OverlayChecker difficult to evade even
if the attacker can reverse engineer our classification model (e.g.,
by trial-and-error attempts). To illustrate that, Figure 18 depicts a
simplified flow chart demonstrating the branches of the model. In
its essence, the model takes a series of features of a given overlay
as inputs, and classifies the overlay to be malicious, benign, or risky
(meaning that an overlay is highly likely to be malicious). In our
deployed system, every overlay is determined to be either malicious
or benign, but because this example is simplified (i.e., missing some
evaluation steps) we add the extra category.

As shown in Figure 18, features examined at early stages are
more important than those in later stages. Type, Flags, and re-
quests for BIND_ACCESSIBILITY_SERVICE and Root permissions
are examined first—they play the most important role in deter-
mining the malice of an overlay. This is because these features
determine the fundamental capabilities of an overlay (as explained
in §3.4.1 and §3.4.2), such as whether the overlay can display on top
of other Views, get the user’s input events, and programmatically
perform click or scroll actions. In contrast, ScreenShot and PACK-
AGE_USAGE_STATS permissions are requested to assist the actions
of an overlay, so they are relatively less dangerous and examined
afterwards. Appearance features are examined at the last stage to
determine whether an overlay exhibits an “abnormal” layout (to
the user’s eyes). Here “abnormal” means that the overlay has an ab-
normal appearance in terms of one or more appearance properties
(refer to Table 1). Since OverlayChecker is data driven and machine
learning-based, it can automatically identify certain combinations
of appearance properties as an abnormal layout.

Thus, the organization of the trained classifier precludes attack-
ers from adopting the vast majority of malicious techniques in
their overlays. For example, the most recent class of overlay-based
attacks, “cloak and dagger” attacks [10], can only go through a
fixed path in Figure 18 (highlighted in light blue), which always
results in a malicious or risky classification. An attacker seeking
a benign label can evade the detection of our system by carefully
tuning certain parameters; in this case, however, he must sacrifice
many powerful capabilities, such as binding to accessibility ser-
vices, accessing user events, or displaying over the full screen. This
seriously limits the power of the attacker’s overlays, since most
existing malicious overlay strategies are precluded (demonstrated
by the 96% precision/recall in §4.2). Furthermore, the abnormal
layout tests restrict the attacker’s ability to obfuscate the overlays
from users. Finally, we have to admit that security issues, in partic-
ular the overlay-based security, are often games of cat and mouse.
As the “cat”, OverlayChecker owns its value by precluding most
existing malicious overlay strategies, and attackers are left with a
significantly weaker range of attack capabilities. Since the model
is updated frequently, e.g., daily in the current integration with T-
Market, such classification logic will become even more restricted
after considering more malicious overlay behaviors in the future.

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

177

5 RELATEDWORK
Given the prevalence and severity of overlay-based security issues,
a number of previous studies have analyzed overlay-based attacks
(§5.1) and proposed defense approaches (§5.2).

5.1 Overlay-based Attacks
Direct attacks construct deceptive overlays which confuse users
to misinterpret UI interactions. Figure 1 classifies such attacks into
five groups. First, malicious redressing overlays (in Figure 1(a)) im-
personate small UI widgets (e.g., buttons) as a part of the current UI
window, thus triggering users to click [19]. Second, malicious trans-
parent overlays (in Figure 1(b)) are made invisible to cover victim
apps, causing users to see the visible one but operate on the invisi-
ble one. Massive GUI hijacking attacks based on these transparent
overlays have been reported to lure users to type passwords (by
hijacking keyguards) or grant permissions (by hijacking security
alerts) [3, 9, 30, 40]. Malicious transparent overlay attacks can also
be launched through WebView in Android to compromise web con-
tent [21, 22]. Third, malicious hollow-out overlays (in Figure 1(c))
selectively uncover UI components of victims apps, misleading
users over the meaning of the interaction by manipulating the cov-
ered overlay [19]. Fourth, malicious hover overlays (in Figure 1(d))
are too tiny in size to be noticed visually. For example, hover over-
lays have reportedly been abused by malicious apps to capture
sensitive inputs (e.g., passwords and credit card numbers) [10, 37].
Finally, malicious overlays outside the screen (in Figure 1(e)) cannot
be noticed by users, but can still maliciously capture UI events.

Indirect attacks. Overlay-based attacks can also be constructed
indirectly through UI inference and user behavior analysis. An
adversary can launch overlay-based attacks by inferring UI states
using shared memory side channels [6]. Moreover, the location
of screen taps on mobile devices can be identified from certain
sensors [11, 13, 14, 23, 24, 32, 36, 39]. This empowers non-trivial
overlay-based attacks based on users’ tapping behavior. In addition,
Ren et al. reveal the design flaws of Android’s task management
that make it vulnerable to task hijacking, which tricks the system to
display malicious overlays whenever the user launches an app [31].

5.2 Defense Approaches
Security indicator-based defenses. WhatTheApp adds an on-
device security indicator to the system navigation bar to identify
the top Activity and inform users about the origin of the app
with which they are interacting [3]. However, WhatTheApp is
vulnerable to timing attacks because the security indicator is cal-
culated periodically—a malicious overlay can be inserted within
the period [9]. To fix this problem, Overlay Mutex was proposed
to prevent a background non-system app from rendering on top of
any foreground apps [9]. Note that WhatTheApp, Overlay Mutex,
and other UI/security indicator-based defenses [8] require domain
knowledge to modify the existing Android framework, making
them difficult to deploy by the current Android community.

Static detection-based defenses. Prior work proposes to detect
malicious overlays by analyzing overlay properties specific to pre-
defined attack vectors using static program analysis [3]. Despite
the same target, OverlayChecker differs in the following aspects.

First, OverlayChecker extracts both static and dynamic properties
of each overlay. Thus, it does not suffer from the limitations of
static methods, such as dealing with reflection, class loading, or na-
tive code [3]. Second, OverlayChecker uses a data-driven approach
based on a large-scale, real-world dataset of malicious apps (refer
to §3), rather than predefined attack vectors.

DECAF. Liu et al. present the DECAF system for detecting ad
fraud in Windows phone apps [20]. While DECAF and Overlay-
Checker target different threats (ad fraud versusmalicious overlays),
they have several commonalities: (1) an early detection approach
with Monkey emulations; (2) some ad fraud windows are in fact
overlays; and (3) adoption by mainstream app stores (Microsoft and
T-Market). On the other hand, they have essential methodologi-
cal differences. In particular, DECAF leverages legally enforceable
terms and conditions to detect ad fraud, while OverlayChecker
acquires its detection mechanisms via a comparative study of the
overlay behavior between benign and malicious apps, since there
are no regulations on the overlay usage. In fact, this makes Over-
layChecker more complicated and comprehensive.

WhatTheApp and CDS. Bianchi et al. present the WhatTheApp
system which uses static analysis techniques to determine whether
there is a malicious app running on an Android device [3]. It is
commendable that they consider a wide variety of attack vectors
to judge malicious Android apps. Unfortunately, WhatTheApp has
been proven flawed in [9] that it is quite easy for a malicious
app to bypass the periodic checking of WhatTheApp; moreover,
WhatTheApp is vulnerable to side-channels attack [35]. In contrast,
OverlayChecker does not have these problems since it is data driven
and a machine learning-based early detection system. Thus, it can
detect more crafty malicious apps and is more user-friendly.

CDS is another static analysis system which leverages only four
fixed features to determine the malice of an overlay-based app [38],
and it uses alert windows to remind users. Compared to our Over-
layChecker, its examined features are much fewer and thus not
comprehensive enough; also, its used alert windows are vulnerable
to the overlay attacks themselves while OverlayChecker is immune
to this problem as an early detection system.

ClickShield. Possemato et al. present the ClickShield system for
detecting clickjacking on Android [27], as well as the “hide overlays”
defense proposed by Google which is only useful for system apps.
ClickShield and OverlayChecker have a similar target but essen-
tially different methodologies for malware detection. ClickShield
examines a series of rules such as the position and pixel difference,
so it owns the advantages of simplicity and stability. Nevertheless,
an attacker can evade its detection by designing certain conditions
beyond the rules, e.g., it will suffer from a large amount of calcula-
tion on pixel difference during the malware detection. Compared
to ClickShield, OverlayChecker is more complicated and may gen-
erate unstable results due to its data-driven methodology, but is
more powerful in terms of detection coverage and robustness.

6 CONCLUSION
Usability and security often constitute two sides of a tool in real
world. At present in the Android OS, there is enormous tension
between the remarkable usability and severe security threats of

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

178

overlays. Without effective countermeasures, attackers can exploit
overlays to fully compromise and control the UI feedback loop of
Android devices. This paper addresses this tension by exploring
the possibility of enabling the detection of overlay-based malicious
apps at the app market level. We conduct a comparative study of the
overlay behavior between benign and malicious apps, based on a
large-scale, ground-truth dataset from T-Market, one of the world’s
largest Android app stores. Guided by a number of useful insights
revealed by our study, we design and deploy the OverlayChecker
system to quickly and automatically detect overlay-based malicious
apps with high precision and recall. OverlayChecker is integrated
into T-Market as an important part of the app review process, and
we apply OverlayChecker to random apps in Google Play Store to
further confirm its efficacy.

ACKNOWLEDGMENTS
We sincerely thank our shepherd Dr. Landon Cox and the anony-
mous reviewers for their valuable feedback. We also appreciate Hai
Long and Zipeng Wu for their contributions to the deployment of
OverlayChecker. This work is supported in part by the National
Key R&D Program of China under grant 2017YFB1003000, and the
National Natural Science Foundation of China (NSFC) under grants
61632013, 61822205, 61432002 and 61632020.

REFERENCES
[1] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. DroidAPIMiner: Mining Api-

Level Features for Robust Malware Detection in Android. In Proceedings of EAI
SecureComm. Sydney, Australia.

[2] Fabrice Bellard. 2005. QEMU, A Fast and Portable Dynamic Translator. In Pro-
ceedings of USENIX ATC. Anaheim, CA, USA.

[3] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-
pher Kruegel, and Giovanni Vigna. 2015. What the App is That? Deception and
Countermeasures in the Android User Interface. In Proceedings of IEEE S&P. San
Jose, CA, USA.

[4] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (October 2001),
5–32.

[5] Leo Breiman, Jerome H. Friedman, Richard. Olshen, and Charles J. Stone. 1984.
Classification and Regression Trees. Encyclopedia of Ecology 40, 3 (January 1984),
582–588.

[6] Qi Alfred Chen, Zhiyun Qian, and Z. Morley Mao. 2014. Peeking into Your App
without Actually Seeing it: UI State Inference and Novel Android Attacks. In
Proceedings of USENIX Security. San Diego, CA, USA.

[7] Sanorita Dey, Nirupam Roy, Wenyuan Xu, and Srihari Nelakuditi. 2013. Leverag-
ing Imperfections of Sensors for Fingerprinting Smartphones. ACM SIGMOBILE
Mobile Computing and Communications Review 17, 3 (July 2013), 21–22.

[8] Earlence Fernandes, Qi Alfred Chen, Georg Essl, J. Alex Halderman, Z. Mor-
ley Mao, and Atul Prakash. 2014. TIVOs: Trusted Visual I/O Paths for Android.
Technical Report CSE-TR-586-14. University of Michigan, Ann Arbor.

[9] Earlence Fernandes, Qi Alfred Chen, Justin Paupore, Georg Essl, J. Alex Halder-
man, Z. Morley Mao, and Atul Prakash. 2016. Android UI Deception Revisited:
Attacks and Defenses. In Proceedings of FC. Barbados.

[10] Yanick Fratantonio, Chenxiong Qian, Simon Chung, and Wenke Lee. 2017. Cloak
and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In Proceedings of IEEE S&P. San Jose, CA, USA.

[11] Mayank Goel, Jacob Wobbrock, and Shwetak Patel. 2012. Gripsense: Using Built-
In Sensors to Detect Hand Posture and Pressure on Commodity Mobile Phones.
In Proceedings of ACM UIST. Cambridge, MA, USA.

[12] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. 2013. Reran:
Timing and Touch-sensitive Record and Replay for Android. In Proceedings of
ACM/IEEE ICSE. San Francisco, CA, USA.

[13] Jun Han, Emmanuel Owusu, T. Nguyen Le, Adrian Perrig, and Joy Zhang. 2012.
ACComplice: Location Inference Using Accelerometers on Smartphones. In Pro-
ceedings of IEEE COMSNETS. Bangalore, India.

[14] Ronny Hänsch, Tobias Fiebig, and Jan Krissler. 2014. Security Impact of High
Resolution Smartphone Cameras. In Proceedings of USENIX WOOT. San Diego,
CA, USA.

[15] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: Programmable UI-Automation for Large-Scale Dynamic Analysis

of Mobile Apps. In Proceedings of ACM MobiSys. Bretton Woods, NH, USA.
[16] Hongqi He, Liehui Jiang, Haifeng Chen, and Weiyu Dong. 2012. Hard-

ware/Software Co-design of Dynamic Binary Translation in X86 Emulation.
In Proceedings of IEEE CSAE. Zhangjiajie, China, 283–287.

[17] Chih-Wei Huang. 2016. Android-x86 Vendor Intel Houdini. https://osdn.net/pro
jects/android-x86/scm/git/vendor-intel-houdini/.

[18] Yeongjin Jang, Chengyu Song, Simon P Chung, Tielei Wang, and Wenke Lee.
2014. A11y Attacks: Exploiting Accessibility in Operating Systems. In Proceedings
of ACM CCS. Scottsdale, AZ, USA.

[19] Eduard Kovacs. 2016. Most Android Devices Prone to Accessibility Clickjacking
Attacks. http://www.securityweek.com/most-android-devices-prone-accessibil
ity-clickjacking-attacks.

[20] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014. DECAF: Detecting
and Characterizing Ad Fraud in Mobile Apps. In Proceedings of USENIX NSDI.
Seattle, WA, USA.

[21] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks
on WebView in the Android System. In Proceedings of ACM ACSAC. Orlando, FL,
USA.

[22] Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du. 2012. Touch-
jacking Attacks on Web in Android, iOS, and Windows Phone. In Proceedings of
FPS. Montreal, QC, Canada.

[23] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy
Choudhury. 2012. TapPrints: Your Finger Taps Have Fingerprints. In Proceedings
of ACM MobiSys. Low Wood Bay, Lake District, UK.

[24] Sashank Narain, Amirali Sanatinia, and Guevara Noubir. 2014. Single-Stroke
Language-Agnostic Keylogging Using Stereo-Microphones and Domain Specific
Machine Learning. In Proceedings of ACM WiSec. Oxford, UK.

[25] Marcus Niemietz and Jörg Schwenk. 2012. UI Redressing Attacks on Android
Devices. In Proceedings of Black Hat. Abu Dhabi, United Arab Emirates.

[26] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis,
and Sotiris Ioannidis. 2014. Rage Against the Virtual Machine: Hindering Dy-
namic Analysis of Android Malware. In Proceedings of ACM EuroSec. Amsterdam,
The Netherlands.

[27] Andrea Possemato, Andrea Lanzi, Simon Pak Ho Chung, Wenke Lee, and Yanick
Fratantonio. 2018. Clickshield: Are you hiding something? Towards eradicating
clickjacking on Android. In Proceedings of ACM CCS. Toronto, Canada.

[28] Android Open Source Project. 2015. Allow verifier to grant permis-
sions. https://github.com/aosp-mirror/platform_frameworks_base/commit/4
ff3b614ab73539763343e0981869c7ab5ee9979.

[29] Android Open Source Project. 2015. Make SYSTEM_ALERT_WINDOW develop-
ment permission. https://github.com/aosp-mirror/platform_frameworks_base/
commit/01af6a42a6a008d4b208a92510537791b261168c.

[30] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric Bodden. 2015. An
Investigation of the Android/BadAccents Malware which Exploits a new Android
Tapjacking Attack. Technical Report TUD-CS-2015-0065. Technische Universität
Darmstadt.

[31] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. 2015. Towards
Discovering and Understanding Task Hijacking in Android. In Proceedings of
USENIX Security. Washington, D.C., USA.

[32] Roman Schlegel, Kehuan Zhang, Xiao Yong Zhou, Mehool Intwala, Apu Kapadia,
and Xiao Feng Wang. 2011. Soundcomber: A Stealthy and Context-Aware Sound
Trojan for Smartphones. In Proceedings of ISOC NDSS. San Diego, CA, USA.

[33] Silvestri Simone, Rahul Urgaonkar, Murtaza Zafer, and Bong Jun Ko. 2018. A
Framework for the Inference of Sensing Measurements Based on Correlation.
ACM Transactions on Sensor Networks 15, 1 (December 2018), 4.

[34] Android Studio. 2015. UI/Application Exerciser Monkey in Android Studio.
https://developer.android.com/studio/test/monkey.html.

[35] Ming Tang, Maixing Luo, Junfeng Zhou, Zhen Yang, Zhipeng Guo, Fei Yan, and
Liang Liu. 2018. Side-Channel Attacks in a Real Scenario. Tsinghua Science and
Technology 23, 5 (October 2018), 586–598.

[36] Robert Templeman, Zahid Rahman, David Crandall, and Apu Kapadia. 2013.
PlaceRaider: Virtual Theft in Physical Spaces with Smartphones. In Proceedings
of ISOC NDSS. San Diego, CA, USA.

[37] Enis Ulqinaku, Luka Malisa, Julinda Stefa, Alessandro Mei, and Srdjan Capkun.
2017. Using Hover to Compromise the Confidentiality of User Input on Android.
In Proceedings of ACM WiSec. Boston, MA, USA.

[38] Longfei Wu, Benjamin Brandt, Xiaojiang Du, and Bo Ji. 2016. Analysis of Click-
jacking Attacks and An Effective Defense Scheme for Android Devices. In Pro-
ceedings of IEEE CNS. Philadelphia, PA, USA.

[39] Zhi Xu, Kun Bai, and Sencun Zhu. 2012. TapLogger: Inferring User Inputs On
Smartphone Touchscreens Using On-board Motion Sensors. In Proceedings of
ACM WiSec. Tucson, AZ, USA.

[40] Lingyun Ying, Yao Cheng, Yemian Lu, Yacong Gu, Purui Su, and Dengguo Feng.
2016. Attacks and Defence on Android Free Floating Windows. In Proceedings of
ACM AsiaCCS. Xi’an, China.

[41] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, You, Get Off
of My Market: Detecting Malicious Apps in Official and Alternative Android
Markets. In Proceedings of ISOC NDSS. San Diego, CA, USA.

Session 4: Taming Your Apps MobiSys ’19, June 17–21, 2019, Seoul, Korea

179

https://osdn.net/projects/android-x86/scm/git/vendor-intel-houdini/
https://osdn.net/projects/android-x86/scm/git/vendor-intel-houdini/
http://www.securityweek.com/most-android-devices-prone-accessibility-clickjacking-attacks
http://www.securityweek.com/most-android-devices-prone-accessibility-clickjacking-attacks
https://github.com/aosp-mirror/platform_frameworks_base/commit/4ff3b614ab73539763343e0981869c7ab5ee9979
https://github.com/aosp-mirror/platform_frameworks_base/commit/4ff3b614ab73539763343e0981869c7ab5ee9979
https://github.com/aosp-mirror/platform_frameworks_base/commit/01af6a42a6a008d4b208a92510537791b261168c
https://github.com/aosp-mirror/platform_frameworks_base/commit/01af6a42a6a008d4b208a92510537791b261168c
https://developer.android.com/studio/test/monkey.html

	Abstract
	1 Introduction
	2 Background
	2.1 Android Overlay Basics
	2.2 Security Practices of App Stores

	3 Understanding Overlay Behavior
	3.1 App Dataset
	3.2 Overlay Feature Extraction
	3.3 Global Statistics
	3.4 Profiling Key Overlay Features
	3.5 Summary of the Study Results

	4 Detecting Overlay-based Malware
	4.1 Design and Implementation
	4.2 Evaluation
	4.3 Extensibility
	4.4 Robustness to Evasion Attempts

	5 Related Work
	5.1 Overlay-based Attacks
	5.2 Defense Approaches

	6 Conclusion
	Acknowledgments
	References

